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Abstract

Transformers have been shown to be able to
perform deductive reasoning on a logical rule-
base containing rules and statements written in
English natural language. While the progress
is promising, it is currently unclear if these
models indeed perform logical reasoning by
understanding the underlying logical seman-
tics in the language. To this end, we propose
ROBUSTLR, a suite of evaluation datasets that
evaluate the robustness of these models to min-
imal logical edits in rulebases and some stan-
dard logical equivalence conditions. In our ex-
periments with RoOBERTa and TS5, we find that
the models trained in prior works do not per-
form consistently on the different perturbations
in ROBUSTLR, thus showing that the models
are not robust to the proposed logical pertur-
bations. Further, we find that the models find
it especially hard to learn logical negation and
disjunction operators. Overall, using our eval-
uation sets, we demonstrate some shortcom-
ings of the deductive reasoning-based language
models, which can eventually help towards de-
signing better models for logical reasoning over
natural language.

1 Introduction

Building systems that can automatically reason
over a given context to generate valid logical in-
ferences has been a long pursued goal within the
field of AI (McCarthy, 1959; Rocktidschel and
Riedel, 2017; Manhaeve et al., 2019). Recently,
Clark et al. (2020) have shown that transformers
(Vaswani et al., 2017) are able to emulate deductive
reasoning on a logical rulebase (henceforth referred
to as a theory) containing rules and statements writ-
ten in natural language. Following this, recent
works (Tafjord et al., 2021; Saha et al., 2020, 2021;
Sanyal and Ren, 2021) show that such models can
also produce the reasoning steps (i.e., the proof
graph) that emulate the model’s logical reasoning
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f1: Charlie is tall.

rl: Erin is kind, if Charlie is tall.
statement: Erin is kind.

Label: True

(a) Original Theory

fl: Charlie is tall.

rl: Erin is kind, if Charlie is tall and
round.

statement: Erin is kind.

Label: Unknown

(b) Conjunction Contrast Perturbation

fl: Charlie is tall.

rl: Erin is kind, if Charlie is tall or
round.

statement: Erin is kind.

Label: True

(c) Disjunction Contrast Perturbation

fl: Charlie is tall.

rl: If Erin is not kind, then Charlie is
not tall.

statement: Erin is kind.

Label: True

(d) Contraposition Equivalence Perturbation

Figure 1: Overview of ROBUSTLR. (a) An original
theory contains facts, rules, a statement, and the entail-
ment label. The Logical Contrast set perturbations using
conjunction and disjunction are shown in bold in (b) and
(c), respectively. In the first case the label changes to
Unknown as the statement is no longer provable. In (d),
we show one of the Logical Equivalence perturbations
where the rule is paraphrased using logical contraposi-
tion. Please refer to Section 3.1 for more details.

process. While these advances are impressive, it is
currently unclear if these models are indeed able
to use logical reasoning robustly by understand-
ing the semantics of the different logical operators
involved in this task.

Logical reasoning, in combination with other
abilities, is an important skill required in all kinds
of NLP tasks such as NLI (Dagan et al., 2006),
Question Answering (Yang et al., 2018a), etc. Thus
a fundamental question that needs to be addressed
is whether the above models perform deductive rea-



soning by using the theory in the right manner, or
rather learn some spurious patterns from the data to
answer the question. Some prior works Gururangan
et al. (2018); Chen and Durrett (2019); McCoy et al.
(2019) have found that models solving different rea-
soning tasks tend to exploit spurious correlations
between the context/question and the label. A simi-
lar study is missing for deductive reasoning tasks
involving logical operations.

A key hypothesis of this work is that if a model
performs logical reasoning in natural language as
expected, it should be able to correctly solve theo-
ries that are logically perturbed within some logical
constraints. To test this, we develop ROBUSTLR,
a suite of deductive reasoning evaluation sets, con-
taining multiple logical perturbations across two
main aspects. The first aspect we aim to evalu-
ate is how well these models understand the three
common logical operators: AND (A), OR (V), and
NOT (—). Inspired by the idea of creating contrast
sets (Gardner et al., 2020), we design the Logical
Contrast set, where theories are minimally mod-
ified so that we can test the model’s robustness
across different operators. Examples of this set are
shown in Figure 1(b) and 1(c). The second aspect
we focus on is the ability of the model to perform
consistently across different logical paraphrases.
A logical paraphrase uses standard equivalence con-
ditions in logic to replace a rule with another equiv-
alent form, essentially rewriting the existing theory.
This poses a different challenge than standard lan-
guage paraphrase since the model needs to under-
stand that the underlying logical structure of two
equivalent sentences mean the same thing. Based
on this aspect, we design the Logical Equivalence
set, where we test three logical equivalences. An
example of the equivalence perturbation is shown
in Figure 1(d).

To test the model performance on ROBUSTLR,
we first fine-tune them on different training datasets
and then evaluate on the test sets mentioned above.
Overall, we find that language models (LMs) fine-
tuned on different deductive reasoning datasets are
not sufficiently robust to the Logical Contrast set.
Specifically, we find that models are poor at un-
derstanding logical OR operators and negations in
sentences. Additionally, we find that the model
performance is significantly inconsistent on some
subsets of Logical Equivalence set. Thus, using
ROBUSTLR, we demonstrate some important limi-
tations of the language models trained for deductive

reasoning. We hope that this research should even-
tually help with designing better models targeted to
solving logical reasoning in a more robust manner.

2 Background

In this section, we first give some background on
the task of deductive reasoning, and also describe
the models proposed by Clark et al. (2020) to solve
this task.

Deductive Reasoning In deductive reasoning,
we predict whether a given theory 7' supports a
statement s or not. We define a theory T as a
set of facts F = {fi,f2,...,f.} and rules R =
{r1,72,...,7m} expressed in natural language (See
Figure 1 for an example). For a given theory, a
statement can be either provably supported, prov-
ably unsupported (i.e., the negation of the statement
is provable), or not provable at all. This leads to a
3-class classification problem, with the labels be-
ing True, False, and Unknown, respectively. In this
work, we focus on this classification task, where we
expect the model to correctly predict the entailment
of a statement for a given theory. In Figure 1, the
statement is entailed by the theory, leading to the
label True. It can be proved by simply using fact
f1 and rule rq to derive the statement. Formally,
we define the proof set of a statement s, denoted
by G(T,s), as the set of rules and facts that are
required to obtain the statement s from the theory.

Models There have been some recent progress in
solving deductive reasoning for natural language
using pre-trained language models. Clark et al.
(2020) finetune a RoBERTa-Large model on a syn-
thetic dataset to solve deductive reasoning. The
theory and statement are concatenated to generate
the input, and the model output is the predicted la-
bel. On similar lines, Tafjord et al. (2021) propose a
T5-based model to both solve the deductive reason-
ing task as well as generate proofs for entailment.
Please refer to Appendix A for more details on the
usage of these models for deductive reasoning.

3 The ROBUSTLR dataset

In this section, we first give an overview of RO-
BUSTLR, set some notations, and then describe the
proposed evaluation sets one by one.

3.1 Overview

The main goal of ROBUSTLR is to evaluate the
robustness of the model behavior on various log-



ical reasoning probes. First, we assess the abil-
ity of the model to correctly capture the seman-
tics of different logical operators, when presented
in minimally edited contrast inputs. A contrast
set (Gardner et al., 2020) is one where the input
is changed minimally but meaningfully, such that
there is (typically) some change in the label. We
further evaluate whether the model can perform
consistently when shown the same input with differ-
ent logical paraphrases. A theory can be logically
paraphrased by modifying the rules using standard
logical equivalence conditions !. Thus, this leads to
two evaluation categories in ROBUSTLR. The Log-
ical Contrast set tests the LM’s robustness to three
logical operators: conjunction (A), disjunction (V),
and negation (—). And the Logical Equivalence set
evaluates the model’s consistency in solving vari-
ous logically equivalent theories. A strong model
should be robust to both the minimally edited in-
puts and logical equivalences. Overall, these eval-
uation sets probe a model trained to solve the de-
ductive reasoning task, to check whether it indeed
learns the semantics of the logical operators and
their underlying working principles.

3.2 Notations

We consider two predicate forms in our dataset -
unary and binary. A unary predicate contains only
one argument and is denoted by X (a). Similarly,
a binary predicate is represented as X (a, b). Here,
X is the predicate relation and a, b are the vari-
ables. An atomic predicate is defined as either a
predicate or the negation of the predicate (denoted
as =X (a)). In contrast, a complex predicate can
contain multiple predicates (or their negated forms)
combined using logical operators conjunction (A)
and disjunction (V).

Internally, we maintain a symbolic representa-
tion of these facts and rules, enabling us to later
create the different evaluation sets of ROBUSTLR.
A fact is symbolically represented by a predicate.
In fact, the facts in our dataset are always atomic
predicates. A rule is symbolically represented by
a logical connection between predicates, separated
by the “implies that” logical symbol ( = ). Thus,
arule can be defined as p = ¢, where the LHS
p and RHS ¢ are atomic or complex predicates. If
both p and ¢ consist of atomic predicates, then the
rule is called a simple rule. A compound rule is one

'nttps://en.wikipedia.org/wiki/
Logical_equivalence

fl1: Charlie is tall.

f2: Erin is not the brother of Gary.
rl: If Charlie is tall or smart, then
Gary is kind.

r2: Charlie is round if Gary is kind.
statement: Charlie is not round.
label: False

(a) Natural Language Form

fl1: tall(Charlie)

£f2: -brother(Erin, Gary)

rl: tall(Charlie) V smart(Charlie) -
kind(Gary)

r2: kind(Gary) - round(Charlie)
statement: —round(Charlie)

label: False

(b) Logical Form

Figure 2: Logical Form of a Theory. (a) A theory
in natural language. (b). The corresponding logical
form of the theory. Please refer to Section 3.2 for more
details.

where at least one of p and ¢ contain some com-
plex predicates. An example of a natural language
theory and its corresponding logical form is shown
in Figure 2. In this, fact f; is a unary atomic predi-
cate, while fact f> is a binary predicate. Rule 71 is
a compound rule, with the LHS p of the rule being
a complex predicate. Rule 73 is a simple rule.

3.3 Logical Contrast Sets

In this evaluation set we probe the ability of the
model to robustly understand the three different
logical operators (A, V, —). For this, we develop
different contrast sets (Gardner et al., 2020) with
minimal editing of the theory, probing specific rea-
soning abilities of different operators. The key
intuition is to evaluate if the model is able to un-
derstand the minor changes in the theory brought
by the addition of logical operators, and predict
the change in label accordingly. First, we describe
the different perturbations below, and then propose
two versions of the contrast sets.

Contrast Perturbations For a given theory T’
and statement s, we first select a rule to be modi-
fied such that it part of the proof set G(7', s). This
ensures that our perturbation would likely influ-
ence the model’s reasoning process while predict-
ing entailment of the statement s. Next, we add
an unseen predicate ¢ to the rule LHS p of one of
the rules using conjunction (A) or disjunction (V).
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In some further variants of perturbations, we in-
clude the predicate ¢ (or the negated —t) as a fact
in the theory, leading to different labels. Lastly, we
also negate the rule RHS ¢ to introduce the logical
negation (—) perturbations.

The proposed perturbations described above are
shown in Table 1 for the conjunction operator. The
first row is a base theory which is used to generate
these contrast sets. In the next set of triads, the
rule is modified to have an unseen predicate ¢ in
conjunction with the existing rule LHS. Here ¢ is a
predicate that is not part of the existing facts and in-
ferences in the theory (hence, referred to as unseen
predicate). Additionally, we add ¢ (or —t) as part of
the facts in the theory. This lead to modification of
the label as shown in rows 3-4. For the next set of
triads, we modify the base rule to have a negated
rule RHS —q. The corresponding label changes are
shown in rows 5-7. In this table, we assume the
label of the statement is True for the base theory
in row 1. The perturbation set for the label False
is shown in Table 9 in Appendix. We group these
perturbations into three classes as shown in Table 1:
BASE, CONJ, CONJ+NEG. These groups are based
on which logical operator is the new addition with
respect to the base theory. If a model performs
accurately on this contrast set, we expect that the
model understands the semantics of conjunction
and negation logical operators reasonably well.

Similar to the above Conjunction Contrast
Set, we show the perturbations considered in this
set in Table 2, where the distractor is added to
the rule LHS using disjunction (V). More such
perturbations with the base case being the label
False is shown in Table 10 in Appendix.

We propose two variants of the Logical Contrast set
using the above perturbations, as described below.

Without Distractors We define distractors as the
facts and rules that are not part of the proof set for
a given theory and statement. For cases where
no proof set is feasible (i.e., instances with label
Unknown) we assume there are no distractors. In
layman terms, distractors can confuse the reason-
ing process of the model by adding unnecessary
information. Thus, a set without distractors should
be easier for the model to reason with. Thus, in this
version, we only keep the essential facts and rules
in the theory and remove any unnecessary informa-
tion. Formally, for a given theory T' and statement
s, we keep the facts and rules that are in the proof

Modified Rule Facts Statement  Label Group
p = q {p} q True BASE
pAt = ¢ {p} q Unknown CONJ
pAt = q {p, t} q True CONJ
pAt = ¢ {p, -t} q Unknown CONJ+NEG
pAt = —q {p} q Unknown CONJ+NEG
pAt = —q¢ {p,t} q False CONJ+NEG
pAt = —q {p,—t} q Unknown CONJ+NEG

Table 1: Conjunction Contrast Perturbations. The min-
imal edits done to a base theory (first row) for testing the
conjunction and negation reasoning abilities. The group re-
flects the overall change in theory w.r.t. the base theory.

Modified Rule Facts Statement Label Group
p = q {p} q True BASE
pVit = ¢ {p} q True DISJ
pVt = ¢ {p.t} q True DISJ
pVt = ¢ {-p, -t} q Unknown DISI+NEG
pVt = —q {p} q False DISJ+NEG
pVt = —q {p,t} q False DISJ+NEG
pVt = —q {-p,-t} q Unknown  DISI+NEG

Table 2: Disjunction Contrast Perturbations. The minimal
edits done to a base theory (first row) for testing the disjunction
and negation reasoning abilities. The group reflects the overall
change in theory w.r.t. the base theory.

set G(T, s). To create the contrast sets, we follow
the same perturbations as described above.

With Distractors In this version, do no such fil-
tering as above, thus keeping all the facts and rules
in the original theory. This set should be more chal-
lenging for the model as it has to first understand
which facts and rules are important and then use
them to predict the entailment.

3.4 Logical Equivalence Sets

The Logical Equivalence set contain theories where
the underlying symbolic representation of a rule is
replaced by another representation that is logically
equivalent. The logical equivalent form of a rule
can be derived from standard logical equivalence
conditions, as described below:

¢ Contrapositive: p — ¢=—-q — —p

* Distributive1: (p — @A (p = r)=p =
(gAT)

* Distributive 2: (p = ¢ A(r = ¢ =(V
r) =4

Here p, q, r can be both atomic predicates or com-
plex predicates. For the Contrapositive equivalence,
every rule 7; in the theory T’ is replaced by the log-
ically equivalent form to create a new logically
equivalent theory 7”. Similarly, for Distributive 1
and Distributive 2, a pair of rules in 7" are merged
according to the equivalence to create a new theory



T'. Note that in both instances, the theory 7" would
still have the same label for a given statement as
the logical steps required to solve the task remains
the same. These modifications are more challeng-
ing than traditional surface-level paraphrases of
the natural language text, as it forces the model to
understand the equivalence of different symbolic
representations. Overall, the Logical Equivalence
set evaluates whether the LM is robust to logical
perturbations of the theory.

3.5 Evaluation Protocol

We report the model performance on these evalu-
ation datasets as the weighted-F1 score from the
Scikit-learn (Pedregosa et al., 2011). Since all the
labels are equally important, a macro-average is
more meaningful for us. The weighted-F1 score
modifies the macro-F1 to take any class imbalance
into account. We have label imbalance by design
of the perturbations in the Logical Contrast sets, as
is evident from Tables 1 and 2. We compute the
F1-score for the base theory and all its perturba-
tions, and average the score across all theories in
the evaluation set.

4 ROBUSTLR Design Details

The main limitation of the RuleTaker dataset (Clark
et al., 2020) is the lack of any systematic con-
trol over the underlying symbolic representation of
facts and rules used in the theories. This makes it
quite challenging to perturb the theories in any log-
ical manner. In ROBUSTLR, we clearly define the
symbolic form of each fact and rule in the theory,
enabling us to automatically generate the Logical
Equivalence and Logical Contrast sets described
above. In this section, we first describe the details
of the domain of our dataset and then outline the
sampling technique used to generate the dataset.

4.1 Dataset Domain

We keep the domains of our dataset fairly simple.
The domains of X and a in the unary predicate
X (a) are the simple English adjectives and the
proper names respectively. Examples of this pred-
icate form are “green(Alex)”, “kind(John)”, etc.
Each predicate is associated to the English tem-
plate sentence form “{a} is { X }.”. We note that
RuleTaker (Clark et al., 2020) also contains sim-
ilar predicates. For the binary predicate X (a,b),
we consider family relationships and proper names
as the domain of X and a respectively. Some ex-

amples of this predicate form are “daughter(Mary,
Gary)”,“father(Bob, John)”, etc. Each predicate is
associated with template sentences such as “{a} is
the { X'} of {b}.”, “The { X} of {b} is {a}.”, etc.
Note that, currently, we do not enforce any gender
constraints on the names, thus allowing predicates
such as “daughter(Bob, Gary)”, which might be un-
likely based on the gender associated statistically
to names in English.

For the rules, we follow the same domain as
the facts as mentioned above. Thus, examples of
some simple rules consisting of atomic predicates
are “green(Alex) = daughter(Bob, Gary)”, “—
father(Bob, John) — kind(John)”, etc. Simi-
larly, examples of some compound rules containing
complex predicates are “green(Alex) V smart(Bob)
= daughter(Bob, Gary) A — kind(John)”, etc.
We note that, for the sake of keeping the theories
deterministic, we avoid using the disjunction op-
erator in the RHS of a rule. A rule of the form
p = q is associated with templates such as “If
{p} then {q}.”, “{q} if {p}.”, where the p’s and ¢’s
can be recursively resolved to their own templates
as defined in the predicates.

4.2 Dataset Sampling

For sampling the theories in ROBUSTLR, we use
the algorithm described in Algorithm 1, which is
a modified version of the Label-Priority sampling
(Anonymous, 2022). At a high-level, we sample
different predicates and assign the labels True/False
to them. After that, we divide the set into multiple
levels. This helps us in sampling theories with
multi-hop reasoning depths. After that, rules are
derived by connecting predicates with the same
label between two different levels. Finally, the True
predicates at level O form the facts in the theory,
the connections denote the rules, and the highest
level denotes the candidate statements.

5 Experimental Setup

Here, we describe the details of the training dataset
considered for this task and the models we fine-tune
to evaluate on ROBUSTLR.

5.1 Dataset Details

We use five different training datasets as described
below:

e NO LOGIC OP: This dataset is created such
that the theories and statements do not contain
any of the three logical operators. This can be



Algorithm 1: Sampling Algorithm
Input

:vocab containing the corpus of all
predicates, ruleset containing the set of
valid rules, predicate negation probability
n1, statement negation probability 2, max
reasoning depth d.

Output : A theory containing a set of facts and

rules, a statement, and a corresponding
label € {0,1,2}

pred_num ~ U[10, 30]

preds < Samp LE(vocab, pred_num)

set ! ~ U[1,d] and group preds into [ layers

rules « []

for predicate p in layer 1 < i <l do

Negate p with probability nq

q~Ul0,1]

assign label g to predicate p

if i > 1 then

k~U[1,2]

cand < p in layer ¢ — 1 with label ¢

body < sampLE(cand, k)

if len(body) > 1 then

operator + SavpLE([A, V], 1)
Compose the predicates in the body
using operator

end if

r < (body = p)

if varipate(ruleset, r) then
| addrtorules

else

/* Rule r does not match
any valid rule forms,
so the predicate is not
provable */

23 assign label O to predicate p
2 end if

25 end if

26 end for

27 facts < predicates in layer 1 with label 1

28 statement < SavpLE(preds, 1)

29 label < pre-assigned label for statement

30 if label == 1 then

- R 7 I N R SR
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31 Negate the statement with probability o
32 label + 2
33 end if

34 return (facts, rules, statement, label)

done by setting the negation probabilities n;
and ng to 0 in lines 6 and 31 respectively, and
k = 11inline 10 of Algorithm 1.

* NEG: In this dataset, we allow negations in
both facts and rules, but restrict to only using
simple rules. Negations are decided uniformly
by setting n; = ny = 0.5. We continue with
this setting for the rest of the datasets men-
tioned below.

* AND + NEG: Here, we restrict the logical op-
erator for compound rules to logical AND by
setting operator to A in line 14 of Algorithm
1. Any compound rule in this dataset contains
only the AND operator.

Training Dataset = RoBERTa-Large T5-Large
NO LOGIC OP 99.95 99.86
NEG 99.99 99.97
AND + NEG 99.98 99.8
OR + NEG 99.76 99.24
AND + OR + NEG 99.98 99.34

Table 3: Performance of ROBERTa-Large and T5-Large
on in-domain held-out set. Both models perform almost
accurately when fine-tuned on these training datasets.

¢ OR + NEG: Similar to AND + NEG, we re-
strict the logical operator of the compound
rules to OR (V).

¢ AND + OR + NEG: This dataset has all the
three logical operators present.

We aim to understand the effect of these training
datasets on the evaluation sets by fine-tuning the
model on each dataset separately. Please refer to
Appendix C for more details on the training and
evaluation dataset statistics.

5.2 Models

Following prior works (Clark et al., 2020; Tafjord
et al., 2021), we evaluate the performance of two
language models: RoBERTa-Large (Liu et al.,
2019) and T5-large (Raffel et al., 2020). To eval-
uate a model, we first fine-tune it on one of the
training dataset mentioned above, and then evalu-
ate on the evaluation set. The performance of the
LMs on in-distribution held-out data (sampled us-
ing same algorithm parameters as the training data)
are shown in Table 3. We note that the models are
able to solve the training dataset almost perfectly
in all cases. Please refer to Appendix A for more
details on the specific input formats for each model
and Appendix B for the hyperparameter settings
and other implementation details.

6 Results

In this section, we first evaluate the LM on RO-
BUSTLR evaluation sets after fine-tuning on the
training datasets mentioned in Section 5.1. Next,
we study the effect of pre-training versus fine-
tuning a pre-trained checkpoint. Lastly, we per-
form human evaluation on a subset to understand
the human upper bound for our evaluation sets.

6.1 Performance on Logical Contrast set

Overall Result We finetune both RoBERTa-
Large and T5-Large models on different training



RoBERTa-Large T5-Large
Training Dataset Without Distractors With Distractors Without Distractors With Distractors
Conjunction  Disjunction Conjunction Disjunction ~Conjunction Disjunction ~ Conjunction  Disjunction
NO LOGIC OP 0.61 0.36 0.60 0.34 0.57 0.34 0.56 0.34
NEG 0.62 0.48 0.62 0.45 0.67 0.47 0.63 0.44
AND + NEG 0.79 0.53 0.70 0.46 0.68 0.43 0.62 0.42
OR + NEG 0.37 0.52 0.39 0.52 0.54 0.51 0.44 0.50
AND + OR + NEG 0.83 0.6 0.74 0.55 0.69 0.53 0.67 0.51
Average 0.64 0.50 0.61 0.46 0.63 0.46 0.58 0.44

Table 4: Performance of RoOBERTa-Large and T5-Large on Logical Contrast sets. We report the weighted-F1 score.
Overall, seeing all the logical operators leads to best performance. Please refer to Section 6.1 for more details.

Training Dataset RoBERTa-Large T5-Large

Contrapositive  Distributive 1 ~ Distributive 2 Contrapositive  Distributive 1 ~ Distributive 2
NO LOGIC OP 0.56 0.51 0.50 0.57 0.51 0.50
NEG 0.76 1.00 1.00 0.77 0.99 1.00
AND + NEG 0.79 0.98 1.00 0.77 0.96 1.00
OR + NEG 0.81 1.00 1.00 0.80 0.99 1.00
AND + OR + NEG 0.82 1.00 1.00 0.79 0.97 1.00

Table 5: Performance of RoOBERTa-Large and T5-Large on Logical Equivalence sets. We report the weighted-F1
score. Overall, we find that the performance drops for contrapositive equivalences, while it remains consistent on
the other two. Please refer to Section 6.2 for more details.

datasets and evaluate them on the Logical Con-
trast set. The two variants of the Logical Contrast
set, with and without distractors, are further sub-
divided based on the type of operators used in the
perturbation. The results are shown in Table 4. We
observe that with increasing variety of logical oper-
ators in the training data, the performance generally
improves across different datasets and models. But
there are some notable exceptions. For instance, we
find that models trained on the OR + NEG training
data perform worse than a model trained on NO
LOGIC OP, when testing on Conjunction contrast
perturbations. This shows that the model requires
training data that is strongly aligned with the opera-
tors being evaluated the test set, which is expected.
Additionally, we find that the even the best perfor-
mance on this evaluation set is still significantly
degraded from the almost perfect performance in
the in-distribution held-out set in Table 3. This
shows that these models do not learn the semantics
of the logical operators in a robust manner.

Effect of distractors Next, we observe that the
performance of both the LMs on the variant without
distractors is generally better than with distractors.
This shows that there is a non-trivial challenge in
retrieving the relevant sentences in the theory and
then using the retrieved sentences to reason the
entailment within the same model. Doing this in
one model can lead to some performance drops.

Variation with logical operators Lastly, we an-
alyze the performance variation with respect to
different logical operators. Overall, we find that
both the models perform worse on the disjunction
contrast perturbations as compared to conjunction.
To better understand these performance differences,
we plot the model performance for each perturba-
tion group as defined in Section 3.3. We do this
for the models trained on the AND + OR + NEG
dataset, since the model performance is best when
trained on this dataset. The performance plot is
shown in Figure 3. We find that the most challeng-
ing operator is negation as the score drops signif-
icantly on the negation-based contrast sets. This
demonstrates that even if the model is trained on
negations, it is still not able to learn the negation
semantics correctly. Please refer to Appendix E for
a detailed results breakdown for each model.

6.2 Performance on Logical Equivalence set

Results on Contrapositive Equivalence Next,
we evaluate the fine-tuned LMs on the Logical
Equivalence sets. We observe that the model perfor-
mance degrades significantly for the contrapositive
equivalence set, compared to the in-distribution
performance in Table 3. Contraposition involves
changing the rule into a format that has two nega-
tions, thus testing the limits of the model on un-
derstanding negations. From the experiments on
Logical Contrast sets, we know that negations are
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Figure 3: Performance comparison of RoBERTa-Large
and T5-Large across different groups of contrast per-
turbations. We find that negations are hardest to learn
across all settings. Refer to Section 6.1 for more details.

not well understood by the model. Thus, these
results reinforce our previous findings.

Results on Distributive Equivalence For Dis-
tributive 1 and 2 equivalences, we see a nearly
perfect score across all settings when trained with
at least some logical operator. Only NO LOGIC
OP dataset shows a significant drop in performance.
These results indicate that the distributive equiva-
lences are not challenging and are likely quite close
to the training set distribution. Thus, this shows the
importance of the contrast set method to evaluate
the language models. While both the Logical Con-
trast sets and Distributive set contain the logical
ops, one is significantly more challenging than the
other. We plan to perform further investigation to
understand this difference between the two sets.

6.3 Effect of Pre-training

In this part, we evaluate the effect of using a pre-
trained checkpoint in our experiments, in compar-
ison with training a RoOBERTa-Large architecture
from scratch. We train both RoBERTa-Large pre-
trained checkpoint and a model from scratch using
the AND + OR + NEG dataset, and evaluate on the
Logical Contrast set without distractors. The re-
sults are shown in rows 1-2 in Table 6. We observe
a significant drop in performance, ensuring that
knowledge learned during pre-training is crucial
for this task.

6.4 Human Evaluation

To better understand the upper limit of some of
ROBUSTLR evaluation sets, we ask 3 Computer
Science graduate students to annotate 50 randomly
sampled theories from the Logical Contrast set
without distractor variant. The results are shown in
Table 6. We find that humans are roughly equally

Setup Conjunction Disjunction

From scratch using AND + OR + NEG 0.42 0.13
Pre-trained ckpt using AND + OR + NEG 0.83 0.6
Human Performance 0.89 0.84

Table 6: Comparisons between training a model from
scratch, training a pre-trained checkpoint, and human
performance, on the Logical Contrast set without dis-
tractors. Please refer to Sections 6.3 and 6.4 for more
details.

competent on both the conjunction and disjunction
sets. In contrast, the LMs show a biased perfor-
mance towards conjunction. We believe a strong
model should at least perform comparable across
both the logical perturbations, similar to humans.

7 Related Works

Reasoning in natural language has been a preva-
lent problem in NLP. There are multiple reasoning
datasets, studying different aspects of reasoning
over textual inputs. Natural Language Inference
(NLI) (Dagan et al., 2006) is a prominent dataset
that requires reasoning over text to answer if a state-
ment is entailed, contradicted, or neutral given a
hypothesis. HotpotQA (Yang et al., 2018b) tests
multi-hop reasoning abilities that require compar-
isons and inferring missing bridge between sen-
tences. QuaRTz (Tafjord et al., 2019) focuses on
qualitative comparisons between everyday proper-
ties such as distance, etc. CLUTRR (Sinha et al.,
2019) tests whether models can infer biological
relationships between entities in a context. RICA
(Zhou et al., 2021) requires the model to employ
commonsense reasoning to answer questions based
on a context.

Recently, there has been an increasing focus
on evaluating the logical reasoning abilities of
language models. ReClor (Yu et al., 2020) is a
MRC-style dataset derived from graduate admis-
sions examinations that involves logical reasoning.
LogiQA (Liu et al., 2021) is another similar dataset
involving logical reasoning. RuleTaker (Clark et al.,
2020) proposes deductive reasoning datasets that
require logical reasoning using only the knowledge
present in the context. There are very limited works
that probe the logical reasoning abilities of lan-
guage models (LMs). FaiRR (Sanyal et al., 2022)
tests the robustness of logical reasoning models
when the subjects and attributes in the context are
altered to out-of-distribution terms. To the best of
our knowledge, ROBUSTLR is the first dataset that



tests how robust these LMs are to different logical
perturbations. Inspired by the application of con-
trast sets (Gardner et al., 2020) in understanding
model’s decision boundary, we propose multiple
Logical Contrast sets to evaluate the robustness
of language models to different logical operators.
Similarly, we propose Logical Equivalence sets to
test if models learn different equivalence conditions
defined for symbolic logic.

8 Conclusion

In this paper, we proposed ROBUSTLR, a suite of
evaluation datasets to test the robustness of deduc-
tive reasoning models to logical perturbations. In
ROBUSTLR, we propose two evalutaion sets, Logi-
cal Contrast and Logical Equivalence, each prob-
ing different aspects of the logical reasoning pro-
cess. Overall, we find that fine-tuning LMs such as
RoBERTa and T5 on deductive reasoning datasets
is not sufficient to learn the semantics of the logical
operators: conjunction, disjunction, and negation.
Although well-aligned training dataset significantly
helps with performance, the models still find it
challenging to understand negations, both in the
context of contrast sets and contraposition equiva-
lences. We hope that this work demonstrates some
interesting shortcoming of LMs designed for logi-
cal reasoning, that can eventually motivate towards
building better reasoning models.
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Figure 4: Overview of the RoBERTa-Large model
- The context (containing the facts and rules) and the
statement are concatenated together as input and passed
into a RoBERTa-Large model. The model is trained on
cross entropy loss for a 3-class classification task.

A Model implementation details

In this section, we describe the implementation
details of the language models used to evaluate
ROBUSTLR.

* RoBERTa-Large: Following  Rule-
Taker (Clark et al., 2020), we use a
pre-trained RoBERTa-Large (Liu et al.,
2019) model to perform the classifica-
tion task. Specifically, we input in the
format [CLS|] T [SEP] s [SEP] to the
RoBERTa-Large model, and extract the
[C'LS] embedding to predict the label. Here,
T is the theory which is the concatenation of
the facts and rules, and s is the statement. We
use Cross Entropy loss to fine-tune the model
on the training dataset.

» TS-Large: Following ProofWriter (Tafjord
etal., 2021), we train a T5-Large (Raffel et al.,
2020) model for the deductive reasoning task.
For this, we add a prefix to the T5-Large’s in-
put and generate the output in a fixed format.
Specifically, we give the input in the format:
$answer$ ; $Squestion$ = s ; $context$ =
T'. Here, T is the theory which is the concate-
nation of the facts and rules, and s is the state-
ment. And the output is defined to be in for-
mat: $answer$ = True/False/Unknown.
The model is trained on the default language
modeling loss to match the output format. At
evaluation time, we match the output template
with the above description and generate the
model’s predicted label accordingly.

B Hyperparameter Details

Here we use RoBERTa-Large (Liu et al., 2019)
and T5-Large (Raffel et al., 2020) models for the
3-class deductive reasoning classification task. We

Training Dataset Train Dev Test

NO LOGIC OP 51093 10948 10950
NEG 69669 14929 14930
AND, NEG 78370 16793 16795
OR, NEG 53691 11505 11506
AND, OR,NEG 86682 18574 18576

Table 7: Training dataset statistics. Please refer to
Section C for more details.

Number of instances

44361
48761

45602
43271

Logical Equivalence Contrapositive 112154
Logical Equivalence Distributive 1 5336
Logical Equivalence Distributive 2 72418

Evaluation Set

Logical Contrast w/o distractor Conjunction
Logical Contrast w/o distractor Disjunction

Logical Contrast w/ distractor Conjunction
Logical Contrast w/ distractor Disjunction

Table 8: Evaluation dataset statistics. Refer to Section
C for more details.

train the pre-trained checkpoints available in the
Hugging Face (Wolf et al., 2020) Transformers li-
brary. For RoBERTa-Large model, we use AdamW
(Loshchilov and Hutter, 2019) with learning rate
le-5. For T5-Large, we use AdamW with learning
rate le-4. Both models are trained with batch size
8 on Nvidia Quadro RTX 8000 GPUs. Training
a single task on one GPU costs nearly 8 hours on
average.

C Dataset Statistics

In this section, we describe the training and evalua-
tion dataset statistics. We first train the model on
the datasets in Table 7. Each dataset comprises of
different types of logical operators to help us in un-
derstanding the effect of different logical operators.
Then we evaluate the trained models on evaluation
datasets mentioned in Table 8. In evaluation, we
test the model on two variants of Logical Contrast
set: with and without distractors. We further di-
vide each of them into conjunction and disjunction
datasets based on the type of perturbation. Lastly,
we evaluate the model on three types of Logical
Equivalence datasets.

D Contrast Perturbations

Following Section 3.3, we show the conjunction
contrast and disjunction contrast perturbations for
the case when base theory’s label is False in Tables
9 and 10, respectively.



Modified Rule Facts Statement  Label Group
p = —q {p} q False BASE
pPAL = —q {p} q Unknown CONJ
pAt = —q {p.t} q False CONJ
pAt = —q {p,—t} q Unknown CONJ+NEG
pAt = ¢ {p} q Unknown CONJ+NEG
pAt = ¢ {p.t} q True CONJ+NEG
pAt = ¢ {p, 1t} q Unknown CONJ+NEG

Table 9: Conjunction Contrast Perturbations. These are
perturbations for testing conjunction and negation reasoning
abilities. First row is the base theory being perturbed. Please
refer to Appendix D for more details.

Modified Rule Facts Statement Label Group
p = q {p} q False BASE
pVit = —q {p} q False DISJ
pVt = —q {p,t} q False DISJ
pVt = ¢ {-p, -t} q Unknown DISI+NEG
pVt = ¢ {p} q True DISJ+NEG
pVt = ¢ {p,t} q True DISJ+NEG
pVt = ¢ {—p, -t} q Unknown DISI+NEG

Table 10: Disjunction Contrast Perturbations. These are
perturbations for testing disjunction and negation reasoning
abilities. First row is the base theory being perturbed. Please
refer to Appendix D for more details.

E Logical Contrast set breakdown

In this section, we further discuss the performance
of the LMs on each group of the Logical Contrast
set. From Tables 11 and 12 we can say that the
models generally perform worse when they need to
handle more complicated compound rules (CONJ +
NEG > CONJ > BASE (where > means harder)).
Additionally, we find that when we add more com-
pound rules in the training dataset, the performance
is generally better, except for OR + NEG. From
Table 6, we can say that OR is harder to learn no
matter from scratch or from a pre-trained check-
point. So, when training on OR + NEG, instead
of using AND, the model performs worse since it
cannot figure out the semantics of AND using the
OR dataset. And that’s why OR + NEG always
perform worse than NEG in conjunction dataset
or performs similarly in disjunction dataset. Also,
we observe that models trained with AND perform
better on conjunction and models trained with OR
perform better on disjunction. Lastly, we find that
the models are worse at handling disjunction than
conjunction theories. Overall, it indicates that these
models still do not learn the semantics of logic from
language.

F Result breakdown by label

From Tables 13 and 14, we find that the model
gets good results when trained on NO LOGIC OP

dataset and that is likely because the model learns
to predict Unknown more frequently. When the
model is trained on the other four datasets with
more compound rules, the performance are gener-
ally similar or slightly improved on the True and
False labels. That means adding more compound
rules during training can only help the model up to
an extent. The exception in the trend is seen with
OR + NEG dataset, for similar reasons as discussed
in Appendix E.



. . Disi .
Logical Contrast set breakdown Conjunction Isjunction

BASE CoONJ CoONJ+ NEG BASE Dis; Disi+ NEG

NO LOGIC OP 0.50  0.54 0.71 0.50 0.30 0.44
NEG 1.00  0.73 0.50 1.00  0.64 0.34
AND + NEG 1.00  0.86 0.72 1.00  0.56 0.45
OR + NEG 1.00 0.36 0.27 1.00  0.86 0.34
AND + OR + NEG 1.00 0.84 0.78 1.00 0.87 0.44

Table 11: Performance breakdown of RoBERTa-Large with different groups of Logical Contrast set. Please refer to
Appendix E for more details.

Logical Contrast set breakdown Conjunction Disjunction

BASE CoONJ CoONJ+ NEG BASE Dissi DisJ + NEG

NO LOGIC OP 047 049 0.67 048 0.23 0.44
NEG 1.00  0.78 0.57 1.00  0.58 0.34
AND + NEG 1.00  0.81 0.56 1.00  0.52 0.30
OR + NEG 1.00  0.63 0.42 1.00  0.86 0.32
AND + OR + NEG 1.00  0.83 0.42 1.00  0.88 0.34

Table 12: Performance breakdown of T5-Large with different groups of Logical Contrast set. Please refer to
Appendix E for more details.

Without Distractors With Distractors
Training Dataset Conjunction Disjunction Conjunction Disjunction
False True Unknown False True Unknown False True Unknown False True Unknown
NO LOGIC OP 0.00 0.77 0.95 0 0.6 0.95 0.00 0.74 0.96 0 0.55 0.96
NEG 0.77 0.77 0.66 0.62 0.61 0.45 0.76  0.75 0.67 0.58 0.57 0.42
AND + NEG 0.76  0.77 0.88 0.57 0.58 0.74 0.77 0.77 0.78 0.58 0.58 0.48
OR + NEG 0.78 0.79 0.28 0.77 0.78 0.25 0.79 0.78 0.31 0.76  0.75 0.28

AND +OR +NEG 0.75 0.75 0.94 0.77 0.78 0.45 0.75 0.75 0.83 0.75 0.74 0.39

Table 13: Performance breakdown of RoOBERTa-Large with different labels for Logical Contrast set. Please refer to
Appendix F for more details.

.. Contrapositive Distributive 1 Distributive 2

Training Dataset
False True Unknown False True Unknown False True Unknown

NO LOGIC OP 0.00 0.70 0.98 0.00 1.00 - 0.00 1.00 -
NEG 0.66 0.68 0.97 1.00 1.00 - 1.00 1.00 -
AND + NEG 0.68 0.68 0.99 0.98 0.98 - 1.00 1.00 -
OR + NEG 0.75 0.75 0.94 1.00 1.00 - 1.00 1.00 -
AND + OR+NEG 0.73 0.73 1.00 1.00 1.00 - 1.00 1.00 -

Table 14: Performance breakdown of RoOBERTa-Large with different labels for Logical Equivalence set. Please
refer to Appendix F for more details.



